

Internet of Things Weather Station

IEEE Northern Virginia Section

Hands-On Professional Development Series

October 29, 2016 Montgomery College

Sketch 03 – Standalone Weather Station

Activities This Session

- Our platform can measure anything with the appropriate sensors.
- We are going to measure a few signals associated with weather:
 - Temperature, Humidity, Atmospheric Pressure, Light Intensity
- > We have some wiring to do.
- We are going to download and install some software libraries needed by the sensors.

Weather Sensors

Our weather station measures

- -Temperature
- -Humidity
- -Barometric Pressure
- -Ambient Light Intensity
- > Other weather related measurements are possible
 - -Wind speed and direction
 - -Precipitation gauge (rain, snow)
 - –Ultraviolet (UV) Index
 - Lightning

Non-Weather Sensors

- Magnetic compass
- Vibration
- Accelerometers
- Gyros
- Strain and pressure
- Myoelectric
- Pulse/heart rate
- RFID

- Soil moisture
- Distance/proximity
- Motion
- Current, Voltage
-) pH
- Radiation
- Vibration
- H, CO, Methane

Sensor Technology

- How sensors work is fascinating!
 - The field combines multiple disciplines like nanotechnology, device physics, and signal processing
- > They are the focus of the IEEE Sensors Council
 - Sponsored by 24 IEEE technical societies
 - Publish the IEEE Sensors Journal and the IEEE Internet of Things Journal
 - Sponsors the annual IEEE SENSORS Conference and more
 - Membership is free to members of IEEE or sponsoring societies
- > We don't have time to discuss how they work in this course

Atmospheric Pressure

- > Also known as barometric pressure.
- High pressure generally indicates good weather. Low pressure indicates stormy weather.
- > Pressure at point of measurement is the **Station Pressure**.
- Station Pressure is strongly dependent on elevation, less dependent on temperature and humidity.
- Atmospheric Pressure decreases with altitude.
- **Standard Atmosphere** (at sea level, mid latitude):

 $1,013.3 \text{ hPa} \equiv 760 \text{ mmHg} \equiv 29.92 \text{ inHg} \equiv 14.7 \text{ psi}$

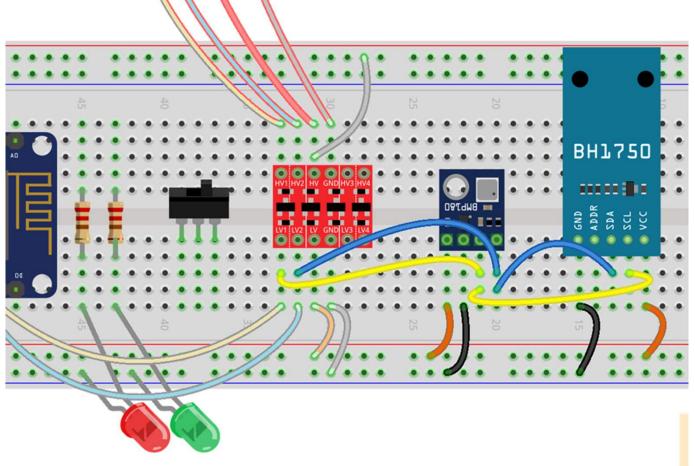
 Calculated pressure at sea level is called Relative Pressure or Sea Level Pressure.

Light Intensity

Illuminance	Example		
50 µlx	Starlight		
100 µlx	Moonless overcast night		
1 mlx	Moonless clear night		
10 mlx	Quarter Moon		
250 mlx	Full Moon clear night		
1 lx	Moon high alt. in tropics		
10 lx	Candle at 1 foot		
50 lx	Family living room		
80 Ix	Hallway		
400 lx	Brightly lit office		
1 klx	TV studio		
32 klx	Sunlight avg. day (min)		
64 klx	Sunlight avg. day		
100 klx	Sunlight avg. day (max)		

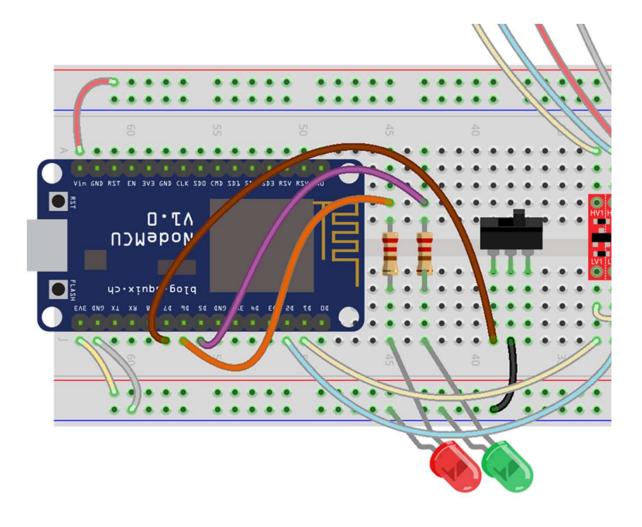
Sensors

- BME280 Barometric Pressure / Altitude / Humidity / Temperature Sensor
 - Range: 300 to 1100 hPa ±1.0 hPa (8.9 to 32.5 inHg ±0.03 inHg)
 - 9000m to -500m ±1m (29,500 to 1,600 ft ±3ft)
 - -40°C to 85°C ± 2°C (-40°F to 185°F ±3.6°F)
 - 0 to 100% relative humidity ±3%
- BH1750 Light Intensity Sensor: 1 65535 lux


Sensor Connections

- > Turn off the regulator.
- Remove the MicroUSB connector.
- Use 120mm jumpers to connect sensors:

Signal	Color	Level Shifter	BME280	BH1750
SCL (D1)	Yellow	LV1	SCL	SCL
SDA (D2)	Blue	LV2	SDA	SDA
+3.3V	Orange	LV	VIN	VCC
GND	Black	GND	GND	GND



Level Shifter to BME280 & BH1750

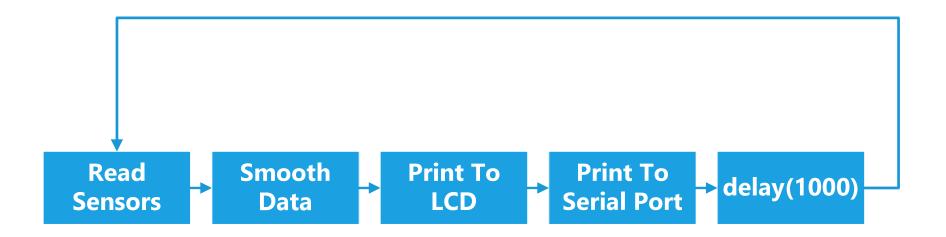
Switch & LED Connections

Install Libraries

1. In web browser, open

w4krl.com/projects/ieee-iot/2016october

- 2. Download Arduino Library Files: 1) bh1750, 2) runningaverage
- **3.** Open Arduino IDE
- 4. Open menu item Sketch | Include Library | Add .ZIP Library
- 5. Navigate to your download directory and add the two new libraries
- 6. Open menu item Sketch | Include Library | Manage Libraries.
- 7. Search for and install **BME280** by Tyler Glenn


Sketch03 – StandAlone

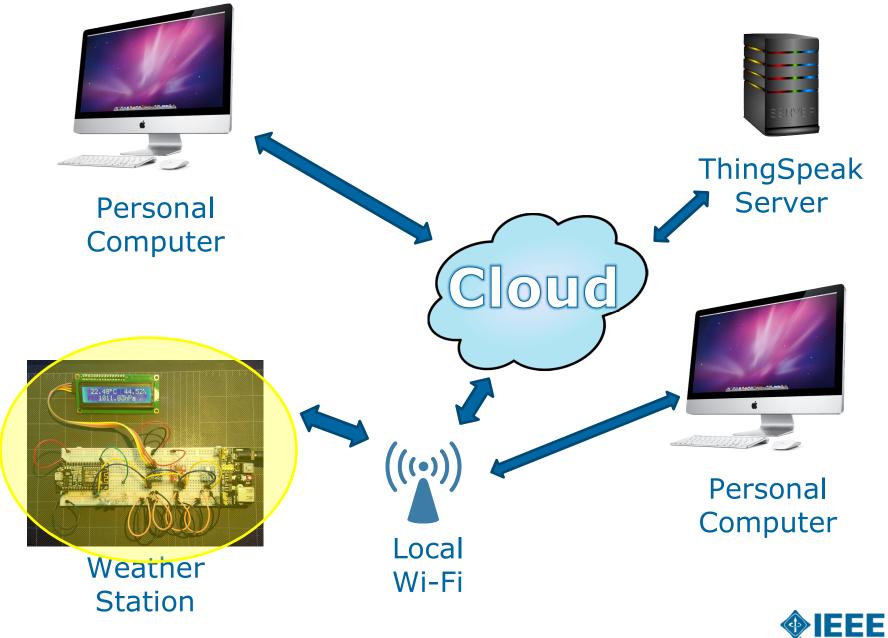
1. Open menu item File | Sketchbook | IEEE_IoT_Sketch03_Standalone

- 2. Verify and Upload.
- 3. Open Serial Monitor. (little magnifying glass in upper right)
- 4. Set Baud rate to **115,200**.
- 5. Observe flow of data on serial monitor and LCD.

Sketch 03 Program Flow

Sketch 03 StandAlone

```
void setup() {
   Serial.begin(115200); // initialize the serial port
   lcd.begin(); // initialize the lcd
   splashScreen(); // show the splash screen
   myBME280.begin(); // initialize BME280 pressure/temperature/humidity
   myBH1750.begin(); // initialize BH1750 light sensor
   pinMode(UNITS_PIN, INPUT_PULLUP); // configure units selection pin
} // setup()
void loop() {
```


```
void loop() {
  rawData = readSensors(); // load all sensor data into rawData struct
  smoothData = averageSensorData(rawData);
  bool units = readUnits(UNITS_PIN);
  printToLCD(smoothData, units);
  printToSerialPort(rawData, smoothData, units);
  delay(UPDATE_INTERVAL_SENSORS);
} // loop()
```


Accomplishments

- > We now have a standalone weather station.
- It measures temperature, humidity, barometric pressure, light intensity, and power supply voltage.
- It displays smoothed measurements on a local LCD display.
- It streams raw and smoothed data to a serial port.
- It will become an IoT device when connected to the Internet.

18 10/29/2016

Advancing Technology for Humanity

Questions?

