

Internet of Things Weather Station

IEEE Northern Virginia Section

Hands-On Professional Development Series

October 29, 2016 Montgomery College

Sketch 04 – IoT Weather Station

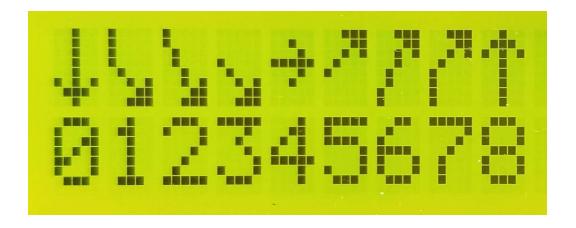
What are we going to do

- Define Barometric Tendency
 - Create graphic characters to display trend
- Add a simple Real Time Operating System (RTOS)
- Activate the ESP8266 WiFi transceiver
- Open a ThingSpeak account
- Post data to the Internet
- Visualize and analyze the data

Barometric Tendency

The trend is measured over a three-hour period:

Trend	Lower	Upper
Steady	0 mb	< 0.1 mb
Falling or rising slowly	0.1 mb	1.5 mb
Falling or rising	1.6 mb	3.5 mb
Falling or rising quickly	3.6 mb	6.0 mb
Falling or rising very rapidly	> 6 mb	

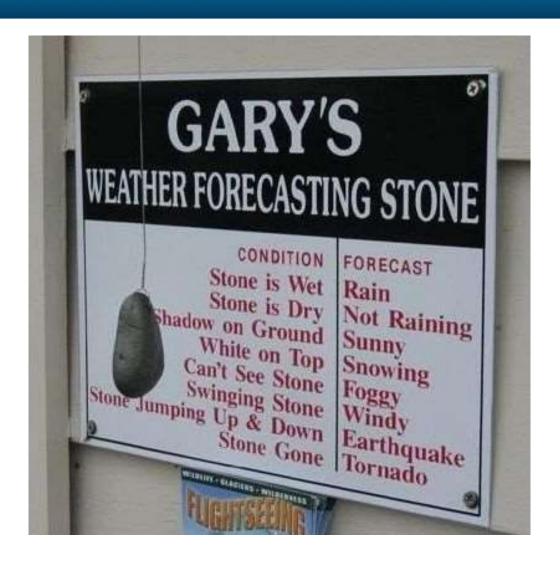

[&]quot;On-Board Weather Handbook" by Chris Tibbs

http://www.islandnet.com/~see/weather/eyes/barometer3.htm

"Graphic" Display

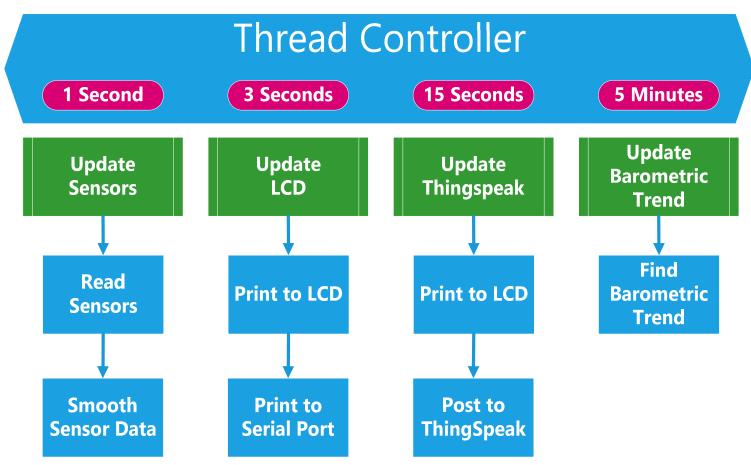
- We need 9 graphics to illustrate barometric trend
- The LCD allows the definition of 8 5x8 characters
- Fortunately, there is one suitable built-in character suitable the indicate "Steady"

Weather Prediction


Sea Level Pressure

kPa	< 1009	1009 - 1027	> 1027
inHg	<29.8	29.8 - 30.2	>30.20
Rapidly falling	Storm	Precipitation likely	Cloudy, Warmer
Slowly falling	Precipitation	Little change	Fair
Steady	Clearing, cooler	Same as present	Continued fair
Rising	Clearing, cooler	Same as present	Continued fair

Source: http://www.sciencecompany.com/-W135.aspx



A Simpler Approach

Real Time Operating System

ThingSpeak Account

- In browser open www.thingspeak.com
- Click "Sign Up"
- Select & Record your UserID
- Change Time Zone to GMT-5:00 Eastern Time
- Select & record your Password
- Agree to Terms
- Click Create Account
- On next screen click "New Channel"

ThingSpeak Channel Definition

- Choose & record channel name
- Field Definitions
 - -1 = Temperature
 - -2 = Humidity
 - -3 = Station Pressure
 - -4 = Sea Level Pressure
 - -5 = Light Intensity
 - -8 = Voltage

- Make Public
- \rightarrow Elevation = 170
- Show Location
- Latitude = 39.1863
- Longitude = -77.2466
- Save Channel
- Record API Keys

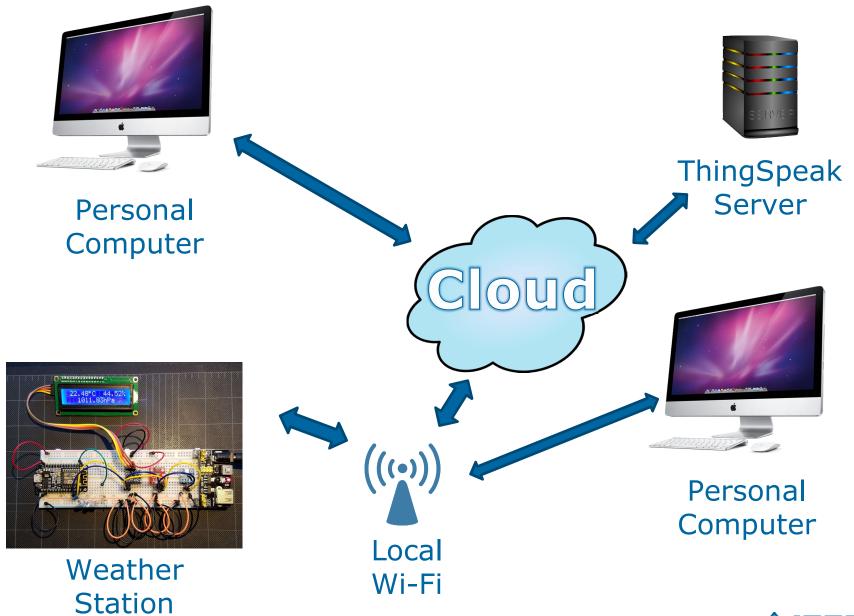
Sketch 04 - ThingSpeak

- Use Arduino IDE Library Manager to install ArduinoThread
- Open IEEE_IoT_Sketch04_Thingspeak_V02
- Edit the sketch:
 - Line 50: change ssid to "MCPA"
 - -Line 51: change password to ""
 - Line 54: enter your ThingSpeak API Write Key
- Upload it and observe LCD screen

ThingSpeak Built-in Visualizations

- Select Public or Private View it should be populated with charts.
- Watch charts update every 15 seconds.
- Float mouse over a chart line to see time & value.
- Click on edit icon (pencil) in upper right of a chart.
 - Note Timescale, Data Min & Max, Y-Axis Min & Max
 - Charts are autoscaling. Out of bounds data messes up axis.
 Use Data Min & Max to ignore bad data.
 - Use Y-Axis Min & Max to force reasonable axis values.
 - Use Timescale to avoid data overload

MATLAB Visualizations


- 1. While in Private or Public View
 - Click on MATLAB Visualization
 - 2. Select Custom Template click Create
- 2. Change Name to IEEE IoT Network
- 3. Open **Display_Multiple_Channels** in ThingSpeak_Scripts folder
- 4. Select all text (Control A) and Copy (Control C)
- 5. Paste (Control V) in MATLAB Code window.
- **6.** Modify script to add other sensors (See next slide)
- 7. Under "Add this Visualization..." check Private View and Public View
- 8. Click "Save and Run"
- 9. Return to Public View, Click on Add Visualizations, select IEEE IoT Network

IEEE IoT Weather Station Network

Channel	ChannelID	FieldID	Name
1	123792	1	Karl
2		1	
3		1	
4		1	

Next Steps & Enhancements

- Follow project on www.w4krl.com
- Create a Smartphone app
- Add Over-the-Air update
- Printed Circuit Board
- Enclosures: circuit & sensors
- Solar power and battery backup

- Lightning detection
- Add local Real Time Clock routine
- Add local SD storage
- Wind speed & direction

Questions?

Thank You!

Karl Berger Marty Schulman Monica Mallini Barry Douglass

Please fill out Course Evaluation and Survey Sheets.

